arbitragelab.hedge_ratios.linear
The module implements OLS (Ordinary Least Squares) and TLS (Total Least Squares) hedge ratio calculations.
Module Contents
Functions
|
Get OLS hedge ratio: y = beta*X. |
|
Get Total Least Squares (TLS) hedge ratio using Orthogonal Regression. |
- get_ols_hedge_ratio(price_data: pandas.DataFrame, dependent_variable: str, add_constant: bool = False) Tuple[dict, pandas.DataFrame, pandas.Series, pandas.Series]
Get OLS hedge ratio: y = beta*X.
- Parameters:
price_data – (pd.DataFrame) Data Frame with security prices.
dependent_variable – (str) Column name which represents the dependent variable (y).
add_constant – (bool) Boolean flag to add constant in regression setting.
- Returns:
(Tuple) Hedge ratios, X, and y and OLS fit residuals.
- get_tls_hedge_ratio(price_data: pandas.DataFrame, dependent_variable: str, add_constant: bool = False) Tuple[dict, pandas.DataFrame, pandas.Series, pandas.Series]
Get Total Least Squares (TLS) hedge ratio using Orthogonal Regression.
- Parameters:
price_data – (pd.DataFrame) Data Frame with security prices.
dependent_variable – (str) Column name which represents the dependent variable (y).
add_constant – (bool) Boolean flag to add constant in regression setting.
- Returns:
(Tuple) Hedge ratios dict, X, and y and fit residuals.